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SUMMARY
The advance of personalized cancer medicine requires the accurate identification of the mutations

driving each patient’s tumor.  However, to date, we have only been able to obtain partial insights into

the contribution of genomic events to tumor development. Here, we design a comprehensive approach

to identify the driver mutations in each patient’s  tumor and obtain a whole-genome panorama of

driver events across more than 2,500 tumors from 37 types of cancer. This panorama includes coding

and  non-coding  point  mutations,  copy  number  alterations  and  other  genomic  rearrangements  of

somatic origin, and potentially predisposing germline variants. We demonstrate that genomic events

are at the root of virtually all tumors, with each carrying on average 4.6 driver events. Most individual

tumors harbor a unique combination of drivers, and we uncover the most frequent co-occurring driver

events. Half of all cancer genes are affected by several types of driver mutations. In summary, the

panorama described here provides answers to fundamental questions in cancer genomics and bridges

the gap between cancer genomics and personalized cancer medicine.

Tumors arise from genomic mutations, often referred to as ‘drivers’, that confer proliferative advantage to a

cell1. Various classes of mutations, such as somatic point mutations (single nucleotide variants, or SNVs,

multinucleotide variants,  or  MNVs,  and short  insertions and deletions,  or  indels),  somatic copy number

alterations (SCNAs) and somatic balanced genomic rearrangements (SGRs)2, can drive tumorigenesis.  In

addition to somatic driver mutations, some cancer mutations are inherited in the germline. Identifying drivers

from the myriad of  ‘passenger’ mutations  present  in  tumor  genomes has  been a  major  focus  of  cancer

genomics over the last 20 years. Recently, methods aimed at identifying signals of positive selection in the

pattern of tumor mutations, with the assumption that cancer development follows a Darwinian evolutionary

process, have succeeded in detecting genes affected by driver mutations3–9.

Despite enormous advances in cancer genomics in recent years, only partial views of the contribution of

genomic  mutations  to  tumorigenesis  have  been  obtained.  As  a  result,  fundamental  questions  about  the

emergence of tumors remain unanswered. It is unclear, for instance, whether tumors of all cancer types are

caused primarily by genomic driver events, and the relative contributions of point mutations and structural

variants (SVs), such as SCNAs and SGRs to the emergence of cancer remain unknown. Moreover, beyond

point mutations in the promoters of  TERT10,11 and a few other genes12 and some instances of promoter and

enhancer  hijacking13–15,  we  have  only  limited  insight  into  the  contribution  of  non-coding  mutations  to

tumorigenesis.  A key open question concerns the number and specific combinations of  driver mutations

required to make a somatic cell become malignant and how this differs across tumors. 

The characterization of more than 2,500 tumors by the International Cancer Genomics Consortium (ICGC)

and  The  Cancer  Genome  Atlas  (TCGA)  under  the  Pan-Cancer  Analysis  of  Whole  Genomes
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(PCAWG)16 initiative provides an unprecedented opportunity to obtain a comprehensive whole-genome view

of driver events in cancer. Here, we set the goal of identifying all driver events (somatic point mutations,

SCNAs, SGRs, and potentially predisposing germline variants) across the whole genome of each tumor in

the PCAWG cohort. We call this list of driver events the per-patient panorama of driver mutations (or simply

panorama). To obtain it, we designed an incremental approach (Fig. 1a; Methods and Suppl. Notes 1 and 2)

that  exploits the  power  of  this  cohort to  discover  novel  drivers,  both  coding  and  non-coding,  and  the

knowledge accumulated through decades of cancer genetics research2. We found driver mutations in virtually

all tumors, thereby providing definitive evidence of the oft-quoted maxim that cancer is fundamentally a

genomics disease. We also demonstrated the presence of a small number of driver mutations in each tumor –

4.6 on average, a number that is relatively stable regardless of of the variability in mutational burden. While

the contribution of  somatic  point  mutations  and SVs to  tumorigenesis  across  cancer  types  differs,  their

relative proportions across the entire cohort are very similar. We found that most individual tumors harbor a

unique combination of driver mutations, and we uncovered the most frequently co-occurring driver events.

Some of these combinations may have a synergistic effect in the emergence of cancer, as in the cases of

somatic point mutations of KRAS and SMAD4 in pancreatic adenocarcinomas (Panc-AdenoCA) and DAXX

and MEN1 across pancreatic endocrine (Panc-Endocrine) tumors. Our analysis also revealed that up to 25%

of  tumors  contain  non-coding  driver  point  mutations,  the  most  frequent  of  which  are  TERT promoter

mutations, with large differences between tumor types.

Patient-centric catalog of somatic driver point mutations

We first focused on identifying somatic driver point mutations –SNVs, MNVs, and short indels– in each
individual tumor. One necessary, but no sufficient step in this direction consists in the identification of cancer
driver genomic elements in the cohort, a purpose for which in recent years several successful methods have
been developed4–9.  Using an array of  these  methods,  the  PCAWG Drivers  and Functional  Interpretation
Group17 identified  coding  and  non-coding  genomic  elements  (GEs),  including  protein-coding  genes,
promoters, 5’UTRs, 3’UTRs, and enhancers with signals of positive selection across the PCAWG cohort
(Fig. 1a; Methods). (Here, we refer to these drivers as discovery GEs.) While this reduces the problem, two
important challenges remain. 

First, not all somatic point mutations in these discovery GEs are driver mutations. This is revealed from the
comparison of the computed expected rate of  passenger point  mutations (background) and the observed
excess of point mutations above it –henceforth referred to as excess8,18 (Fig. 1b; Extended Data Fig. 1a). This
excess constitutes the fraction of somatic driver point mutations of each GE in the cohort. For example,
while virtually all somatic point mutations of  TP53 across breast adenocarcinomas (Breast-AdenoCA) are
likely to be drivers (~100% computed excess),  the excess computed for  NF1 somatic point mutations in
malignant melanomas (Skin-Melanoma) indicates that about two thirds are likely passengers. Thus, to solve
the aforementioned first problem, we designed a rank-and-cut approach to identify the somatic driver point
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mutations in each driver GE. Briefly, somatic point mutations observed across the cohort were ranked on the
basis of a number of features that distinguish known tumorigenic mutations from passenger events. Then,
top-ranking instances –up to the number computed from the excess– were nominated as drivers (Details in
Suppl. Note 1 and Extended Data Figs. 1b-e). 

Second, the statistical power of the PCAWG cohort to discover driver GEs is limited; some bona fide cancer
genes could be mutated at frequencies below the detection threshold of current driver discovery methods17,19.
To overcome this problem, we first collected GEs missed by the driver discovery process in PCAWG, which
have been detected in other cohorts of tumor whole-exomes20,21, or identified through clinical or experimental
evidence in recent decades2 (Fig. 1a). We call the integrated list of discovery and prior knowledge GEs, the
Compendium of Mutational  Driver GEs (Mutational  Compendium, for  short);  Suppl.  Table 1.  Then,  we
designed a set of stringent rules to nominate somatic driver point mutations affecting the prior knowledge
GEs on the basis of their known or inferred mode of action (Suppl. Note 1, Extended Data Fig. 1b and f).
Somatic driver point mutations in those elements are assumed to be few, as may be deduced from their lack
of signals of positive selection in the cohort. The decision-making process integrated by the rank-and-cut and
the rule-based approaches, which we call onCohortDrive, accurately distinguishes between known driver and
benign somatic point  mutations  and closely agrees  with the  estimated average number  of  driver coding
mutations across cohorts using a dNdS approach8 (Suppl. Note 1; Extended Data Figs. 1g and 2a).

After applying onCohortDrive to all tumors in PCAWG, we obtained a patient-centric catalog comprising
5,913 somatic driver point mutations (Fig. 1c,d; Extended Data Fig. 2b; Suppl. Table 2).  Interestingly, the
single most recurrent somatic driver point mutation in the cohort affects the promoter of TERT, followed by
coding  SNVs affecting  KRAS,  BRAF,  and  PIK3CA (Fig.  1e).  The coding  sequence  of  TP53  is  the  GE
affected by the largest number of somatic driver point mutations in the cohort (n=860), with the promoter
region of  TERT ranking third (Fig. 1f). Interestingly,  TERT is the most recurrently mutated driver GE in
some cohorts, such as malignant melanomas (Skin-Melanoma) and glioblastomas (CNS-GBM) (Extended
Data Fig. 2c).

The role of somatic point mutations in tumorigenesis

We  then  used  this  catalog  to  answer  open  questions  about  the  role  of  somatic  point  mutations  in
tumorigenesis. First, leveraging the unique opportunity provided by the comprehensive whole-genome view
of drivers provided by PCAWG, we asked what is the relative contribution of somatic non-coding mutations
to cancer.

The 785 somatic driver point mutations identified in non-coding regions –30% of which are TERT promoter
point mutations and 41% intronic point mutations affecting the splice-sites of loss-of-function driver genes
(Supp. Note 1)– constitute 13% of the catalog (Fig. 1d and Fig. 2b; table below the barplot). While this
contribution  may  be  underestimated  because  our  detection  of  somatic  driver  point  mutations  is  biased
towards coding genes due to the use of prior knowledge, we obtain a similar result (12%) if the calculation is
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done only on discovery GEs (Suppl. Note 1; Extended Data Fig. 2d).  Up to 25% of all PCAWG tumors
contain at least one non-coding somatic driver point mutation (Fig. 2a). Interestingly, more than 50% of
patients  of  certain  types  of  tumors,  such  as  bladder  transitional  cell  carcinomas  (Bladder-TCC)  and
glioblastomas (CNS-GBM), have at least one non-coding somatic driver point mutation. At the other extreme
of the spectrum, in tumor types such as acute myeloid leukemias (Myeloid-AML) and pilocytic astrocytomas
(CNS-PiloAstro), non-coding somatic driver point mutations appear to contribute little to tumorigenesis. 

Next, we asked how many somatic driver point mutations occur in each tumor, and how this number varies

with the mutational burden.  We found that 78% of PCAWG tumors have at least one somatic driver point

mutation, with a mean of 2.9 per tumor (Figs. 2b and 3b). This number is close to the average number of

coding non-silent  point  mutations in excess recently estimated within genes in the Cancer Gene Census

(CGC) across 7,664 TCGA tumors using a dNdS approach8. Strikingly, even heavily mutated tumors, such as

malignant  melanomas  (Skin-Melanoma)  and  colorectal  adenocarcinomas  (ColoRect-AdenoCA),  carry  a

mean of 3.3 and 7.4 driver point  mutations,  respectively. Overall,  if  the entire range of variation of the

mutational burden across the cohort is considered (i.e., between just 41 and 2.5 million point mutations per

genome),  the  number  of  driver  point  mutations  remains  remarkably  stable,  with  the  interquartile  range

between 1 and 4 (Fig. 2b). The number of driver point mutations increases more slowly than the total number

of point mutations in PCAWG tumors (Extended Data Fig. 3a). As a result, the proportion of driver point

mutations is anticorrelated with the mutational burden of tumors (Fig. 2c). Across most cancer types, driver

point mutations show a higher cancer cell fraction than passenger point mutations (Extended Data Fig. 3b).

This  observation  is  more  apparent  for  certain  GEs  in  the  Mutational  Compendium,  which  exhibit  a

significant  accumulation  of  highly  clonal  point  mutations,  thereby  indicating  that  they  carry  potential

founder or potent driver mutations22 (Fig. 2d). 

In at least 6.7% (37 out of 554) of the tumors where we fail to identify somatic driver point mutations the

cause  may  be  an  insufficient  coverage  in  the  sequencing  (Extended  Data  Fig.  3c;  PCAWG-Drivers

Discovery). This affects in particular some cohorts, such as prostate adenocarcinomas (Prost-AdenoCA; 8

out of 93 patients with no somatic driver point mutations),  stomach adenocarcinomas (Stomach-AdenoCA;

10 out of 16 patients), and Biliary adenocarcinomas (Biliary-AdenoCA; 5 out of 7 patients). The failure in

other cohorts may be caused by the incompleteness of the Mutational Compendium or the prevalence of

other types of genomic alterations.

In summary, despite large differences in mutational burden, tumors carry a stable low number of driver point

mutations –2.9 as average across PCAWG. While non-coding point mutations represent only a small fraction

(3%) amongst all point mutations in GEs of the Mutational Compendium, they contribute to tumorigenesis in

25% of the cohort, and constitute 13% of all driver point mutations in the PCAWG cohort. 
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Integrated panorama of whole-genome driver mutations

In addition to somatic point mutations, tumors may be driven by somatic SVs, such as SCNAs, and SGRs.

As with somatic point mutations, we first created a Compendium of somatic driver SVs (Fig. 1a), and then

used strict rules to identify which SCNAs (Supp. Note 2; Extended Data Fig. 4a) and SGRs (Extended Data

Fig. 4b, Methods) most likely act as drivers in each PCAWG tumor. Furthermore, we identified germline

variants across the cohort which may also contribute to tumorigenesis, and revealed the landscape of biallelic

inactivation  events  of  tumor  suppressor  genes.  The  integration  of  the  catalogs  of  somatic  driver  point

mutations, SVs and germline variants across the cohort thus produced the first pan-cancer whole-genome

panorama of driver events (Fig. 1a; Fig. 3a and b; Suppl. Table 3). 

We asked whether the panorama gave support  to the widespread notion that  all  tumors have a genomic

origin. We found driver mutations in 91% of the tumors of the cohort, with variable fractions across tumor

types (Fig. 3b). Of note, 17% of all PCAWG tumors carried at least one potentially tumorigenic germline

variant  (Fig.  3d).  Our  failure  to  detect  genomic  drivers  in  some cohorts,  such  as  kidney  chromophobe

adenocarcinomas (Kidney-ChRCC) may be attributed to our incomplete knowledge of cancer genes in these

malignancies  or  to a prevalence of  epigenomic alterations.  Nevertheless,  our  results  demonstrate,  to  the

extent allowed by current analyses, that genomic mutations drive at least 9 out of 10 tumors. 

We then turned to the longstanding question of the minimum number of driver mutations needed to turn a

cell malignant23–26. We found on average 4.6 driver mutations across tumors of the cohort, again with large

differences across cancer types (table below Fig. 3b). Even tumors of intensively studied types of cancer –

such  as  breast  adenocarcinomas  (Breast-AdenoCa)–  for  which  accumulated  prior  knowledge  probably

encompasses most possible driver events, contain on average fewer than 7 driver mutations. If we assume

that  driver  mutations accumulate over time during the development  of  cancer22,  the  number required to

initiate a tumor is probably even lower. In agreement with this idea, we found that tumors diagnosed at older

ages  tend  to  carry  more  driver  mutations  (Extended  Data  Fig.  5a),  although  this  general  trend  masks

important differences among malignancies (Extended Data Fig. 5b and c). 

Since there have been contradictory reports of the relative contribution of somatic SVs and somatic point

mutations to tumorigenesis27,28, we next explored the relative prevalence of both types of alterations in the

cohort. We discovered that both appear to play a role of similar preponderance, with a mean of 3.6 somatic

driver SVs in 80% of patients with at least one somatic driver SV, and mean of 2.9 somatic driver point

mutations in 79% of  patients with at  least  one somatic  driver  point  mutation (Fig.  3c).  However,  these

numbers hide important differences across cancer types. For example, a higher contribution to tumorigenesis

is  made by  somatic  SVs  in  ovarian adenocarcinomas (Ovary-AdenoCA;  mean of  5.8  SVs vs  1.9  point

mutations) and breast adenocarcinomas (Breast-AdenoCa; mean of 6.4 SVs vs 2.2 point mutations). On the
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other hand, somatic point mutations make a larger contribution to colorectal adenocarcinomas (ColoRect-

AdenoCA; mean of 2.5 SVs vs 7.4 point mutations) and mature B-cell lymphomas (Lymph-BNHL; mean of

2.2  SVs  vs  6  point  mutations).  A  major  proportion  of  the  patients  with  somatic  driver  mutations

(1,735/2,577) harbor both types of drivers, whereas a small (and comparable) proportion of patients harbor

either  somatic  driver  point  mutations  (n=288)  or  somatic  driver  SVs  (n=318)  (Extended Data  Fig.  4c).

Furthermore, as with somatic point mutations, the number of driver SCNAs in tumors is stable, irrespective

of the fraction of the genome involved in focal amplifications or deletions (Extended Data Fig. 6).

We next asked how frequent these biallelic hits –considering both germline and somatic mutations– affecting

tumor suppressor genes23, are across tumors. We found instances of biallelic inactivation of tumor suppressor

genes in more than half (62%) of PCAWG tumors (Fig. 3d). In some cohorts, such as bladder transitional cell

carcinomas  (Bladder-TCC),  lung  squamous  cell  adenocarcinomas  (Lung-SCC)  and  Pancreatic

adenocarcinomas (Panc-AdenoCA), more than 90% of tumors carry at least one biallelic hit,  comprising

either somatic/somatic or somatic/germline events.

We also found that chromosomal arm-level gains and losses and whole genome duplications appear to be a

pervasive type of mutation in the PCAWG cohort (table below Fig. 3b; Extended Data Fig. 8). More than one

fourth  (28%)  of  the  tumors  suffer  whole  genome  duplications,  ranging  between  0%  of  thyroid

adenocarcinomas  (Thy-AdenoCA),  acute  myeloid  leukemia  (Myeloid-AML),  and  chronic  lymphocytic

leukemia (Lymph-CLL), and 67% of bone osteosarcomas (Bone-Osteosarc). Although it is difficult to assess

the  role  of  chromosomal  arm-level  and  whole-genome  duplication  events  in  tumorigenesis,  their

pervasiveness suggests that they contribute to this process.

We also examined the contribution of each type of driver mutation to the landscape of potential therapeutic

actionability of the cohort (Fig. 3b, bottom panel). We matched drugs employed in the clinic –both approved

or  under clinical  trials– to  the panorama of  driver  mutations  in PCAWG, using the  Cancer Biomarkers

Database29. We considered only mutations that constitute biomarkers of response to an anti-cancer drug in

tumors bearing no concomitant biomarker of resistance to the same drug (Methods). Overall, 331 tumors

presented actionable driver point mutations, 219 presented driver SCNAs, whereas only 75 tumors have

actionable driver SGRs.  Overall,  577 tumors in the cohort  bear  mutations  that  constitute  biomarkers  of

response to drugs that are either FDA-approved or in clinical trials.  Overall,  1,678 tumors in the cohort

present  drivers  that  may be  matched to  anti-cancer  therapies  either  approved or  in  clinical  trials  either

through guidelines or repurposing. Moreover 307 other tumors bear driver mutations susceptible of targeting

using pre-clincal molecules (Extended Data Fig. 7). Interestingly, several elements with non-coding driver

mutations  contribute  repurposing  opportunities  to  this  actionability  landscape.  These  include  mutations

causing over-expression of  TERT, which are susceptible to targeting via Eribulin, currently in pre-clinical
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trials for gliomas30. Moreover, considerable fractions of the tumors of some cohorts (183 across all PCAWG),

given their mutation burden, could potentially benefit from immune checkpoint inhibitors31, either alone of in

combination with targeted therapies (see Methods). 

GEs affected by different types of driver mutations 

Next,  we  used  the  whole-genome  panorama  of  cancer  driver  mutations  to  explore  different  ways  of

alterations of cancer genes that result in tumorigenesis. Overall, 54% (197/366) of genes bearing somatic

somatic point mutations in the coding sequence are susceptible to other types of driver mutations (Fig. 4a

and b). TP53, for instance, carries the highest number of somatic driver point mutations in the cohort (954

patients),  with more than 50% of the patients affected in certain tumor types, such as pancreatic (Panc-

AdenoCA), breast (Breast-AdenoCa), and ovarian adenocarcinomas (Ovary-AdenoCA). It is also affected by

SCNA losses, truncations due to SGRs, and intronic splicing somatic point mutations. The expression of

TP53 is significantly decreased (Mann-Whitney P<0.0001) in tumors with intronic splice-site somatic point

mutations,  SCNA loss,  truncation  or  coding  truncating  somatic  point  mutations  (via  nonsense-mediated

decay32),  compared to  those with the  wild-type form (Fig.  4c).  On the other  hand,  CDKN2B,  PIK3CA,

CTNNB1,  ERG,  MCL1 and  CCND1  are mostly affected by only one type of mutation across tumor types

(Fig. 4b).

TERT is the gene most frequently affected by non-coding somatic driver point mutations (Fig. 4b). It appears
mutated in 263 patients through multiple routes,  such as promoter SNVs and MNVs, balanced genomic
rearrangements affecting cis-regulatory elements,  and SCNA gains.  TERT promoter somatic driver point
mutations are particularly frequent in glioblastomas (CNS-GBM; 27/39), oligodendrogliomas (CNS-Oligo;
11/18), bladder transitional cell carcinomas (Bladder-TCC; 17/23), thyroid adenocarcinomas (Thy-AdenoCa;
11/48),  and  malignant  melanomas  (Skin-melanoma;  63/107).  TERT SCNA gains  are  observed  across
malignant melanomas (Skin-melanoma; n=12), hepatocellular carcinomas (Liver-HCC; n=5), lung squamous
(Lung-SCC; n=3) and adenocarcinomas (Lung-AdenoCa; n=5), whereas enhancer hijacking (due to SGRs)
events  affecting  TERT are  observed  in  malignant  melanomas  (Skin-melanoma;  n=4),  leiomyosarcomas
(Bone-leiomyo;  n=3),  kidney  renal  clear  cell  (Kidney-RCC;  n=1),  kidney chromophobe renal  clear  cell
(Kidney-ChRCC; n=1) and hepatocellular carcinomas (Liver-HCC; n=1). Notably, all these routes of driver
mutation lead to the over-expression of TERT (Fig. 4c).

Finally,  we  studied  the  biallelic  inactivation  of  tumor  suppressor  genes,  that  comprise  combinations  of

germline and/or somatic driver events. Somatic/somatic events are more frequent (84%) among all genes

with biallelic inactivation than germline/somatic events (32%) (Fig.  4d).  The most  frequent  biallelically

mutated gene,  TP53, is inactivated across 736 tumors of 27 cancer types, most of which (707) harbor a

somatic driver point mutation affecting one allele and the somatic loss of the other allele. Overall, we were

able to detect the biallelic inactivation of  TP53  in 77% of the tumors with  TP53 driver mutations; in the

remaining fraction,  other  mechanisms such as  promoter  hypermethylation may play a  role.  Well-known
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tumor suppressor genes, such as CDKN2A and CDKN2B, are rarely inactivated by point mutations, but rather

appear homozygously lost (282 and 258 tumors, respectively). On the other hand, biallelic inactivation of

BRCA1  and  BRCA2 appears primarily due to one germline variant,  followed by the somatic loss of  the

second allele in 63% (22/35 patients) and 45% (25/55 patients) of tumors with BRCA1 and BRCA2 driver

mutations, respectively. The number of genes with biallelic inactivation in individual tumors differ within

and across cancer types (Extended Data Fig. 9a). For example, in both bladder transitional cell carcinomas

(Bladder-TCC) (18/23) and pancreatic adenocarcinomas (Panc-AdenoCA) (183/232), around 77% of patients

carry more than one tumor suppressor gene with biallelic inactivation. 

Combinations of driver mutations

The panorama confirms the accepted notion that in most cases tumorigenesis is due to the accumulation of

driver mutations rather than single driver events: 2,016 tumors (78%) of the cohort possess driver mutations

affecting more than one GE. Moreover, almost each tumor is unique in their combination of driver events:

among  these  2,016 tumors  there  are  1,915  unique  driver  combinations.  We then  measured  the  overlap

between the set of driver GEs of each pair of PCAWG tumors as their Jaccard index (Methods; Fig. 5a). As

expected, tumors of the same cancer type tend to share a higher fraction of their drivers (diagonal of  the

lower triangular heatmap) than tumors of different cancer types. As a trend, CNS-Piloastro patients share the

largest fraction of drivers relative to their total number (Jaccard distribution skewed to high values; mean

Jaccard  Index=0.62),  followed  by  Panc-AdenoCA  patients  (0.3),  Kidney-RCC  (0.18)  and  ColoRect-

AdenoCA (0.17). At  the other end of the spectrum, Breast-AdenoCA (0.07), Liver-HCC (0.06), Stomach-

AdenoCA (0.06) and CNS-Medullo (0.04) patients exhibit the largest degree of driver heterogeneity. The

homogeneity  of  CNS-Piloastro,  Panc-AdenoCA and  Kidney-RCC may  be  explained  at  least  in  part  by

relatively few driver GEs identified in the cancer type and relatively few drivers per patient (diagonal of the

upper triangular heatmap; Extended Data Fig. 10a). However, this is not the case for ColoRect-AdenoCA

tumors, a case in which the relative homogeneity of drivers may stem from a rather narrow pathway to

tumorigenesis, followed by genetic innovation after the establishment of the tumor. Conversely, the relative

heterogeneity of drivers across CNS-Medullo, a cancer type with few driver GEs and few driver alterations

per tumor may indicate the existence of multiple different pathways towards tumorigenesis.

We  then  searched  for  specific  groups  of  drivers  that  tend  to  co-occur  across  tumors.  To  that  end,  we

computed the Jaccard index of the patients in which each pair of driver GEs occur (Extended Data Fig. 10b).

Figure 5b highlights several cases of highly co-occurring drivers. These include the already reported33–35 co-

occurring biallelic inactivation of  VHL,  PBRM1,  SETD2 and  BAP1 across Kidney-RCC patients,  the co-

occurring biallelic inactivation of MEN1 and ATRX/DAXX in Panc-Endocrine tumors, and the co-occurring

biallelic or monoallelic inactivation of SMAD4 and CDKN2B with the activating point mutations of KRAS in

Panc-AdenoCA.  The  co-occurrence  of  point  mutations  involved  in  the  biallelic  inactivations  of  VHL,
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PBRM1 and  SETD2 in Kidney-RCC tumors is not significant (PVHL-PBRM1=0.14, PSETD2-VHL=0.37), indicating

this co-occurrence could be determined solely by the frequency of the biallelic inactivation of each driver

GE. On  the other hand, point mutations involved in the biallelic inactivation of  DAXX and  MEN1 across

Panc-Endocrine tumors co-occur more often than expected from their frequencies alone (P=0.03),  as do

activating point mutations of KRAS and mutations involved in the biallelic inactivation of SMAD4 in Panc-

AdenoCA patients (P=0.02). This suggests that there is at least some degree of synergy between them. 

Discussion

In the present study, we designed and implemented a systematic approach to comprehensively identify driver

mutations  in  each  tumor  of  the  PCAWG cohort,  with  the final  aim of  exploring  the  genomic  roots  of

tumorigenesis. Although thorough, this panorama of driver mutations is not complete because the approaches

used to identify driver events possess limitations. Technical problems of the sequencing and the calling of

variants may result in missing driver point mutations. The discovery of driver GEs is limited to regions of the

genome with known functional elements, basically coding and non-coding genes and their cis-regulatory

elements.  Mutations affecting other regions of the genome and perturbing, for example, the higher-order

structure of the chromatin may also contribute to tumorigenesis but will be missed by the methods designed

to detect signals of positive selection in well-defined GEs. Also, some mutations affecting driver GEs which

may still contribute to tumorigenesis at low frequency, may be overlooked by the drivers discovery until

larger cohorts of whole-genomes become available36. The catalog of driver point mutations is incomplete

with respect to non-coding driver mutations, due to the scarcity of prior knowledge of non-coding driver

GEs. Furthermore, the accuracy in the estimation of the excess of mutations in GEs –in particular in non-

coding regions– above their expected background may be affected by yet unknown mutational processes.

This probably also affects the identification of driver SVs in some cohorts of yet unexplored cancer types,

since only few events –due mostly to the lack of statistical power– were discovered in the PCAWG cohort37. 

The panorama of driver mutations of PCAWG tumors reveals that almost all tumors contain genomic driver

alterations (91% had at least one type of driver mutation), implying that the presence of somatic mutations is

a condition necessary –although perhaps not sufficient38–  for virtually all tumors. One fifth of the PCAWG

tumors had at least one driver-balanced rearrangement, 73% at least one driver SCNA, 79% at least one

driver point mutation, and 17% carry at least one germline susceptibility variant (Fig. 6). A prototypical

glioblastoma (CNS-GBM), for example, bears a somatic driver point mutation activating the TERT promoter,

the biallelic loss of CDKN2A and CDKN2B, the hyperactivation of EGFR via either a SCNA gain or a coding

somatic point mutation, and/or the double somatic biallelic inactivation of TP53. The panorama also showed

that the relative contribution of non-coding mutations is about 13%; this contribution surpasses 50% of the

patients in some types of cancer.  We also described that while overall  somatic point mutations and SVs

represent similar proportions of all driver events, this observation conceals large differences across cancer
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types, with some preponderantly harboring somatic driver point mutations and others driven primarily by

somatic SVs. Another striking finding stemming from the panorama is that the variation in the number of

somatic driver mutations required to initiate a tumor is not related to the total burden of mutations of the

tumor. Instead, it is fairly constant and tends to be fewer than a dozen events in virtually all tumors. Finally,

through the analysis of the sets of co-occurring driver mutations, the panorama provide a key piece in the

efforts to understand how tumors originate and evolve.

The recent advances in cancer genomics described in the introduction have reliably identified genes driving

tumorigenesis across cohorts of patients of different cancer types. However, the overarching objective of

selecting  the  most  effective  treatments  to  target  tumors  –the  personalized  cancer  medicine  paradigm–

requires the identification of the specific mutations driving the tumorigenesis in each patient, which remains

a  largely  unsolved  problem.  The  approach  that  we  have  described  and  implemented  here  to  solve  this

challenge using the PCAWG cohort constitutes a proof-of-principle that bridges the gap between cancer

genomics  and  personalized  cancer  medicine.  We  envision  that  personalized  medicine  initiatives,  via

systematic sequencing the tumor of  cancer patients will  make use of  this type of approaches to support

clinical decision-making.
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FIGURE LEGENDS

Figure 1. Approach to building a panorama of driver mutations across PCAWG tumors
(a) A schematic representation of the comprehensive incremental approach applied to identify all driver mutations in
PCAWG tumors. GEs of different types with signals of positive selection in the cohort, and previously known driver
GEs  and  point  mutations  obtained  from  other  sources  integrated  the  Mutational  Compendium,  which  therefore
comprises both novel discoveries and rediscoveries of drivers across the cohorts in PCAWG, color coded in the panel.
Previously  known and  novel  driver  SVs  and  potentially  tumorigenic  germline  variants  were  collected  to  build  a
Compendium of other driver events. (The list of tumor suppressor genes included in the search for SV drivers and
susceptibility germline variants was obtained from the Mutational Compendium.) Using carefully calibrated methods
we  then  employed  these  Compendia  to  identify  the  driver  events  across  all  tumors  in  the  PCAWG cohort,  thus
producing the Whole genome panorama of cancer drivers in PCAWG.
(b) Point mutations in discovery GEs may be either drivers or passengers; the fraction of the former is variable across
GEs. It is computed as the excess of mutations above the background rate of each GE. The figure shows the distribution
of the excess of mutations computed across GEs in the pan-cancer, breast adenocarcinoma and malignant melanoma
cohorts. (Colors of GEs as in the Compendium in panel a).
(c) The catalog of somatic driver point mutations comprises 5,913 driver point mutations, including Known Driver point
mutations, driver point mutations identified via the rank-and-cut approach (Driver by Rank) and point mutations in
other driver GEs identified via rules (Driver by Rule). The number of passenger mutations (in gray) in driver GEs is
also shown.
(d) The number and fraction of drivers among all point mutations identified varied across GEs of different nature. In the
case of intronic point mutations affecting splice sites, only those affecting the canonical donor and acceptor sites and
predicted to be loss-of-function in tumor suppressor genes by the LOFTEE39 are taken into account to compute the
fraction of passengers. 
(e) Somatic driver point mutations in the cohort include both coding and non-coding events. The heatmap represents the
recurrence of somatic driver point mutations across cohorts of GEs with at least 10 driver point mutations in PCAWG,
with the color in each cell showing the proportion, and the number, the absolute count of mutated patients. The nature of
the GEs affected by them is denoted by circles following the same color code as in Figure 1a. Note that each point
mutation is defined by its position and nucleotide change; KRAS hotspot mutations caused by two different nucleotide
changes appear at the second and third row. The columns of the heatmap are sorted according to the size of the cohort
(high to low).
(f) Identified driver point mutations in GEs that possess at least 40 across the cohort.

Figure 2. Catalog of somatic driver point mutations
(a) Number of tumors in each cohort and across all PCAWG bearing either coding (green), non-coding (blue), or both
(purple) types of somatic driver point mutations. Below the graph, we present the number of patients, and the number of
coding and non-coding driver  point  mutations  (and specifically the number of  TERT  promoter  and intron-splicing
affecting point mutations in loss-of-function driver genes) in each cohort.
(b) Tumors in the cohort exhibit mutational burden with a wide range of variation (gray dots and boxplot), whereas the
number of driver point mutations remains remarkably stable (red dots and boxplot). (Only tumors with at least one
somatic driver point mutation are included in the plot.)
(c)  The fraction of somatic driver point  mutations in tumors  and the total  number of somatic point  mutations are
negatively correlated across the PCAWG cohort.
(d) Normalized (z-score) distribution of the cancer cell fraction of GEs across tumor types. Filled circle represent GEs
with point mutations cancer cell fraction deviating significantly from expectations (two-tail p-value < 0.05). The names
of significant coding and non-coding GEs are colored following the convention in panel (a). 

Figure 3. Whole-genome panorama of driver mutations
(a) The whole-genome panorama of driver mutations in the PCAWG cohort, represented as a circos plot. Each arc
represents a tumor in the cohort. From the periphery to the center of the plot the layers represent: i) the total number of
driver alterations in the tumor; ii) whether the patient bears a whole genome duplication; iii) the tumor type, with color
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codes specified in panel b; iv) the number of SCNAs; v) the number of SGRs; vi) somatic coding point mutations; vii)
somatic non-coding point mutations; and viii) germline variants.
(b) Row-stacked bar plot of the total number of tumors in each cohort with different counts of driver mutations. The
table below the bar plot offers a complementary description of the panorama. The heatmap at the bottom represents the
fraction (color) and number of tumors of each cancer type with driver point mutations, SCNAs, and SGRs that provide
biomarkers of response to anti-cancer therapies either approved or under clinical trials.
(c) Contribution of somatic point mutations and SVs to tumorigenesis across cancer types. (Split violin plots represent
the smoothed probability distribution of the numbers of each type of mutations in each cohort, which expand beyond the
boundaries of the actual distributions.) The halves of each violin plot represent the distribution of the total number of
somatic driver point mutations (bottom, orange) and driver SVs (top, green) in the tumors of each cohort.
(d) Fraction of tumors of each cohort affected by germline susceptibility variants (top), and biallelic inactivation events
(bottom).

Figure 4. Multiple types of mutations affecting driver GEs
(a) Circos plot representation of the number of GEs in the Compendium affected by different types of driver mutations.
Each arc in the circos represents GEs of a different nature; links between them depict GEs susceptible to two types of
alterations, with their thickness proportional to the number of elements sharing both types of alterations. The numbers at
the border of the plot represent unique counts of GEs suffering different types of mutations.
(b)  GEs targeted  by different  types  of  mutations  in  the  cohort  in  more  than  65 patients.  The heatmap shows the
recurrence of alterations experienced by each of them across cancer types (with the color indicating the proportion, and
the number the absolute count of mutated patients); the barplot at the right reflects the proportion of each type of
alteration affecting each GE.
(c) Different types of driver mutations affecting a GE that result in the same type of change to their mRNA level.
(d) Tumor suppressor genes showing biallelic inactivation in 10 or more patients.

Figure 5. Combinations of driver mutations in the cohort
(a) For each pair of patients in the cohort we compute a Jaccard index of the overlap of their sets of driver mutations (at
the level of driver GEs). The joinplots above the heatmap present the (smoothed) distributions of Jaccard index (right
side) and number of patients in the union (top) and the 2D distribution of both variables across all pairs of patients of
three selected tumor types.  The mean Jaccard index of  pairs  of  patients of  each possible pair  of  tumor types  are
represented  in  the  lower  triangle  heatmap.  The violinplots  represent  the  (smoothed)  distribution  of  Jaccard  index
between pairs of patients of all cancer types in the heatmap. The mean number of drivers in the union of pair of patients
of each possible pair of tumor types are represented in the upper triangle heatmap. Only pairs of patients of cancer types
with at least 40 patients are included in the heatmap.
(b) Selected groups of GEs whose driver mutations tend to co-occur across the cohort. Each donut plot in the graphs
represent a GE, with the radius proportional to the number of patients carrying driver mutations affecting it, and the
colors in the donut representing their recurrence in each cohort. The width of the links in the graphs are proportional to
the Jaccard index of the overlap of patients with driver mutations affecting both GEs. The heatmaps at the right side
represent the cohorts in which the highest recurrence of driver mutations (represented by the color tiles beside each
gene name) affecting the members of each graph. Asterisk beside pairs of gene names indicate the significance of the
observed co-ocurrence of somatic driver point mutations of several pairs of GEs are included in each heatmap.

Figure 6. Snapshots of the panorama
Each row summarizes either the pan-cancer cohort or the cohort of a particular tumor type. The horizontal bar plot (at
the left of each row) represents the proportion of patients with different types of mutations. The dot plot with whiskers
at the right represents the mean number of each type of driver mutations registered across tumors with at least one event
(the square dot), and its standard deviation (gray whiskers). For each tumor type, a representative set of genes which
receive frequent driver mutations is presented at the right side of each row. For the full list of  driver mutations see
Supplementary Table 3.
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EXTENDED DATA FIGURE LEGENDS

Extended Data Figure 1. The onCohortDrive method
(a) Distribution of the expected proportion of drivers in each type of GE, computed using NBR (Supplementary Note 1)
as the excess of mutations of each element above the background rate.
(b) Point mutations in Genomic elements (GEs) follow different  processes (either rank-and-cut approach or rule-based)
to be nominated as drivers, depending on whether we are able to compute the excess of somatic mutations above the
background  rate  in  these  GEs.  In  the  rank-based  process  (right  panel),  mutations  affecting  each  GE  are  ranked
according to several features, and the rank is then cut at the position equal to the estimated excess of mutations in the
element  above  the  background  rate.  Mutations  above  the  cut  position  are  considered  drivers,  and  those  below,
passengers. In the rule-based process (left panel), mutations in each tumor are nominated as drivers or passengers using
the same features employed in the rank-based approach. (Details in Supplementary Note 1.)
(c) Distribution of CADD scores of groups of variants in cancer genes. Sets of mutations, from left to right: i) known
driver point mutations in cancer genes observed in PCAWG samples; ii) all other mutations in cancer genes in PCAWG;
iii) all possible variants in cancer genes; iv) all polymorphisms observed in ExAC in cancer genes. The distributions of
CADD  scores  of  different  sets  of  mutations  were  compared  using  the  Kolmogorov-Smirnoff  test.  (Details  in
Supplementary Note 1.)
(d) Relative rank of known driver mutations within all mutations observed in the PCAWG cohort.  The violinplots
represent the distribution, from right to left, of random relative ranking of known driver mutations, functional impact
based ranking, and functional impact and clustering based ranking. (Details in Supplementary Note 1.)
(e)  Distribution of  mutational  probability (computed using ncdDetect)  of  known driver  mutations relative to  other
mutations. Known driver mutations overall have significantly lower probability to occur than other mutations observed
in tumors. In the left panel each dot is a known driver mutation in a patient and its probability of occurrence, relative to
the probability of all other mutations in the patient is shown. The bars in the right panel show the comparison of the
average probability of known driver mutations to the average probability of other sampled mutations (size equal to the
number  of  known driver  mutations)  in  each  cohort.  The  cohorts  with  significantly  (P<0.01)  lower  probability  of
occurrence of known mutations are highlighted (*). (Details in Supplementary Note 1.)
(f)  Distribution  of  the  probability  of  occurrence  of  point  mutations  (ncdDetect)  in  coding  genes  (top,  green)  and
promoters (bottom, yellow). The vertical broken lines mark the cutoffs of probability used to make the groups of point
mutations considered separately in the rule-based approach.
(g) Results of the benchmark of onCohortDrive on groups of known driver and benign mutations. The three main rows
in the table describe the three datasets used in the benchmark (described in Supplementary Note 1), and the columns
represent  (from  left  to  right)  the  number  of  variants  in  each  dataset  classified  by  onCohortDrive  as  drivers  or
passengers, and the total number of variants included in each group. 

Extended Data Figure 2. Building the catalog of driver point mutations
(a) Comparison between the average number of somatic coding driver point mutations identified by onCohortDrive
across each cohort and the average (and confidence intervals) of mutations in excess identified in the same set of genes
in the same tumors by the dNdSCV method.
(b) Fraction of point mutations affecting GEs in different cancer types and in the pan-cancer cohort that are identified as
known-driver,  driver-by-rank,  driver-by-rule  in  the  catalog  of  driver  point  mutations.  (Cohorts  are  sorted  by  the
proportion of driver point mutations identified across each of them, and the classes of driver point mutations are color-
coded as in Fig. 1c.)
(c)  Fraction  of  known-driver,  driver-by-rank,  driver-by-rule  and  passenger  mutations  in  selected  GEs  across  four
cohorts in PCAWG.
(d) Unbiased contribution of non-coding point mutations to tumorigenesis. Similar to main Figure 2a, but computed
only from the discovery GEs (Supplementary Note 1)

Extended Data Figure 3. Features of the catalog of driver point mutations
(a) Correlation between the number of driver point mutations in tumors and their mutational burden (in logarithmic
scale). There is a significant positive correlation between these two quantities, showing that tumors with more mutation
burden carry more driver point mutations. Nevertheless, the number of driver point mutations increases slower that the
total number of point mutations in PCAWG tumors: the slope of the regression between the number of driver point
mutations and the logarithm of the total number of point mutations is approximately 2.
(b) Driver point mutations overall have significantly higher Clonal Cell Fraction (CCF) than other mutations observed
in tumors. The left  panel shows the comparison of the CCF of each driver mutation to the average CCF of other
mutations in the same tumor, and the right panel shows the comparison of the average CCF of driver mutations to the
average CCF of driver mutations in each cohort. The cohorts with significantly (P<0.01) higher or lower CCF of driver
mutations than randomly sampled mutations are highlighted (*). 
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(c) In some cohorts, patients with no identified driver point mutation are significantly enriched (Fisher’s p-value<0.05)
for tumors with insufficient coverage (estimated via the number of reads per clonal copy, or NRPCC) to call point
mutations reliably (NRPCC<5). In the graph, each cohort is represented as a circle, located according to the odds-ratio
and the p-value of the Fisher’s test. The size of eah circle is proportional to the fraction of patients with no driver point
mutations in the cohort. Cohorts with no drivers in patients with sub-threshold NRPCC (infinite odds-ratio) appear at
the right margin of the graph; cohorts with no sub-threshold NRPCC patients (undetermined odds-ratio) appear at the
left margin of the graph.
 
Extended Data Figure 4. Driver SVs in the panorama
(a) Most recurrent driver SCNA gains and losses in the PCAWG cohort. The frequency of each event across cohorts is
represented as a row-stacked barplot using the same color legend for tumor types as in previous figures. The names of
the events correspond to the driver gene within the event or to the chromosomal band the event overlaps with if it
contains no known driver gene. The circles below the bar plot denote the nature of each driver as SCNA gain or loss.
(b) Coding genes involved in the most recurrent driver genomic rearrangements in the PCAWG cohort. Note that events
involving several partners of translocation may have been added to produce the total count of events for each gene. The
frequency of the events involving each gene across the cohort of each cancer type is represented as a row-stacked bar
plot using the same color legend for tumor types as in previous figures. The circles below the bar plot characterize each
event as truncated tumor suppressor gene, fusion oncogene or cis-activating rearrangement.
(c) Distribution of patients with somatic driver mutations, driver SVs or both types of driver mutations across cohorts
and across the whole PCAWG. This graph complements the view in Fig. 3c of the paper on the relative contribution of
somatic point mutations and SVs to tumorigenesis. Cohorts are sorted following the same order as the violinplots in Fig.
3c.

Extended Data Figure 5. Correlation between the number of driver mutations in tumors and the patients’ age
(a) Correlation between the number of driver point mutations in tumors and patients’ age across the PCAWG cohort.
Tumors of different cancer types are represented following the same color convention as throughout the manuscript.
From left to right the panels represent the correlation between i) the number of driver point mutations; ii) the number of
driver SVs; iii) the number of biallelic events; and iv) the total number of driver events and the age of diagnosis of the
tumor. The number of all types of mutations correlates with the age of patients at diagnosis, suggesting that driver
mutations accumulate with the progression of tumors, and therefore supporting the idea that our calculation of mean
number of driver mutations across the cohort may be higher than the actual minimum number of driver events required
to turn a cell malignant. 
(b) Nevertheless, the correlation between the number of different types of mutations in tumors and patients’ age across
selected cancer cohorts (those with at least 100 patients) show striking differences between malignancies. (Odd-number
rows present  graphs  with the  correlation between the number  of  driver  point  mutations  in  tumors  and  the  age  of
diagnosis across three cancer types, and pair-number rows present equivalent graphs with the correlation between the
total number of point mutations (in log scale) in tumors and the age of diagnosis.) For certain tumor types (such as
prostate adenocarcinomas and medulloblastomas) the mutation burden grows exponentially and the number of drivers
grows linearly with the age of diagnosis of the tumor. For some malignancies in this group, such as medulloblastomas,
the differences may be related with different courses of the disease in its pediatric and adult presentations. On the other
hand, for some cancer types there is no discernible correlation between the total number of point mutations or the
number of drivers and the patient’s age (see, for example melanomas and pancreatic adenocarcinomas). This could
mean  that  these  tumors  tend  to  be  diagnosed  mostly  in  later  stages  independently  of  patients’ age.  While  these
differences may reflect actual dissimilarities in the course of these diseases, these results must be taken with caution due
to the small sample sizes of these cohorts.
(c) Correlations between the total number of driver mutations and the age of diagnosis of the tumor across the same
cohorts represented in panel (b).

Extended Data Figure 6. Driver SCNAs across tumors with varying focal SCNAs burden
The graph represents the fraction of the genome of tumors with different number of driver SCNA events that is involved
in different types of focal SCNA events. Each dot represents a tumor, colored following the same legend to represent
tumor types as in previous figures. The three panels represent the relationship between the number of driver high-level
SCNA gains (left), driver high-level SCNA losses (center), and driver low-level SCNA losses (right), with the fraction
of the genome involved in focal events of the same nature in each case. The figure demonstrates the lack of a trend
towards an increase of the number of driver events in tumors with higher fractions of the genome involved in focal
events.
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Extended Data Figure 7. Landscape of anti-cancer actionability of the PCAWG cohort
(a)  The  landscape  of  all  anti-cancer  therapeutic  opportunities  uncovered  by  the  panorama  of  driver  mutations  is
represented as a row-stacked bar plot containing the fraction of tumors in each cancer type –and in the pan-cancer
cohort–  with  therapeutic  opportunities  of  different  type  (color-coded).  These  include  opportunities  arising  from
alterations  that  are  known biomarkers  of  the  response  of  a  tumor  to  a  drug  (strong  colors)  and  opportunities  of
repurposing of these drugs to different tumor types or different types of alterations (faded colors). In this bar plot, each
tumor is only counted once with the targeting opportunity that is closest to the clinical use of the drug.
(b) The heatmap represents the fraction of patients with therapeutic opportunities of each category (rows) in each tumor
type. Here, all opportunities to target each tumor are accounted for.
(c) Furthermore, we identified the tumors with a mutation burden above a threshold reported to accurately predict the
effectiveness of immune checkpoint therapies to treat a variety of tumors. We found that 7% of tumors in the cohort
including 65% of melanomas and 57% of lung squamous cell carcinomas tumors might in principle benefit from these
therapies. The fraction of tumors of each cohort susceptible of responding to either immune checkpoint inhibitors or a
combination of these drugs with classic anti-cancer drugs considered in the landscape described above is represented as
a rowstacked bar plot.

Extended Data Figure 8. The landscape of arm-level SCNAs across tumors
The graphs show the distribution of the number of arm-level SCNA events observed in each cohort. 
(a) Distribution of the number of arm high-level SCNA loss events in each cohort.
(b) Distribution of the number of arm high-level SCNA gain events in each cohort.
(c) Distribution of the fraction of the number of arm low-level SCNA loss events in each cohort.
(d) Distribution of the number of arm low-level SCNA gain events in each cohort.
The boxplots representing the distribution of events in tumors of each cohort follow the same color legend as previous
figures.

Extended Data Figure 9. Distribution of biallelic inactivation of tumor suppressor genes
(Number of genes with biallelic inactivation per patients in each cohort. Only cohorts with at least 10 patients affected
by one or more biallelic inactivation are included.

Extended Data Figure 10. Combinations of drivers across PCAWG tumors
(a) The joinplots with the (smoothed) distributions of Jaccard index (right side) and number of patients in the union
(top) and the 2D distribution of both variables across all pairs of patients of  12 tumor types represented in the heatmap
of Figure 5a.
(b) Network representation of all pairs of GEs with a Jaccard index of overlap of  patients with driver mutations above
0.1. Edges in this network imply high co-occurrence (sharing mutated patients above the Jaccard=0.1 threshold), with
their width proportional to this Jaccard index. The size of the nodes (and the font of the gene names) is proportional to
the frequency of mutation of the gene, and their color corresponds to the cohort with the highest fraction of driver
mutations. The shape of the nodes represent the gene’s mode of action in tumorigenesis.

Supplementary Table 1. The Compendium of Mutational Driver Elements

Supplementary Table 2. Annotated driver point mutations

Supplementary Table 3. The panorama of driver mutations in PCAWG
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METHODS

Genomics data

From the PCAWG Consortium16 we obtained the somatic point mutations (single and multiple nucleotide

variants  and  short  indels;  syn7364923)16,  copy  number  alterations  (syn8042880)37,  structural  variants

(syn7596712)37, cancer cell fraction (syn8532425)22, and expression data (syn3104297)40 across 2,583 tumors

in the cohort. (Eight non-malignant samples were excluded  from downstream analyses.) Genomic elements

(GEs) that potentially harbor driver point mutations were obtained from the PCAWG Drivers and Functional

Interpretation  Group17,  using  the  coordinates  of  Gencode  v19 (syn5259890).  The  list  of  these  genomic

elements included the coding DNA sequence (CDS) of protein-coding genes, their 5’UTR and 3’UTR, the

coordinates of their intronic acceptor and donor splice sites, their promoter regions, known enhancers, and

the exonic regions of non-coding RNAs, and the promoter regions of the latter. In addition, we included

TERT promoter  mutations  (chr5:1295228:G>A and chr5:1295250:G>A)  in  80  samples,  which  were  not

detected in the PCAWG somatic point mutation calling due to low sequence coverage, in accordance with

Sieverling et al. (2017)41.

The Mutational Compendium and the Compendium of other driver GEs

We retrieved the list of mutational discovery GEs identified as drivers of PCAWG tumors from the PCAWG

Drivers and Functional Interpretation Group17. This list of GEs covers coding genes, promoters, enhancers, 3’

and 5’ UTRs,  and ncRNAs. Each GE in this list  was detected because its mutational  patterns exhibited

signals of positive selection across one of several cohorts within PCAWG, the reunion of several cohorts of

tumors with the same cell of origin or from the same organ (metacohorts), or across the entire cohort (pan-

cancer cohort). They were therefore annotated as mutational drivers in each cohort, metacohort and/or the

pan-cancer cohort. We also retrieved the excess of somatic mutations above their expected number for each

GE in the respective cohorts, metacohorts and/or the pan-cancer cohort estimated by the NBR algorithm8.

These are the discovery GEs. Five coding genes and one promoter region of a coding gene identified in the

lymphoma cohorts with a high proportion of mutations introduced by AID (>40%) were removed from these

discovery GEs.

In an effort to complement the list of discovery drivers and to add prior knowledge about the drivers of

tumorigenesis to the compendium, we manually collated and curated a list of previously known cancer GEs –

driving tumorigenesis through point mutations, SCNAs and/or balanced genomic rearrangements– across

tumor types. This list  of drivers comprises: a) GEs with validated tumorigenic effect,  obtained from the

CGC2 and literature reports (with special attention paid to recently reported instances of driver non-coding

genomic  elements),  and  b)  genes  whose  mutational  patterns  show  signals  of  positive  selection  across

previously analyzed cohorts of tumor exomes or genomes20,21. To add SCNA driver GEs to the Discovery
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Compendium, we relied on the identification of amplified or  deleted chromosomic regions (peaks) with

significant recurrence across TCGA cohorts (see below). To add SGR driver events to the Compendium, we

manually gathered known events from the literature and searched for their occurrence in the PCAWG cohort.

Only rearrangements that appear in tumors of the cohort were included in the panorama (see below).

Functional annotation of point mutations

The Variant Effect Predictor39 v86 was used with GRCh37 coordinates to determine the GEs affected by

point mutations and their consequence types. The Combined Annotation Dependent Depletion (CADD) v.

1.0 score of all single and multiple nucleotide variants –as well as the maximum possible CADD score of

short indels– was obtained from cadd.gs.washington.edu42.

Identification of driver point mutations

We developed a method,  onCohortDrive,  to identify driver mutations affecting driver GEs in individual

tumors.  Supplementary  Note  1  contains  the  full  description  of  the method  and  its  benchmarking.

OnCohortDrive comprises a rank-based approach and a rule-based approach. The rank-based approach is

applied to point mutations in GEs with an observed excess of point mutations above the number expected

across the cohort. Briefly, consider that N is the total number of point mutations affecting a GE, and n is the

number of point mutations in excess above the background rate across the tumors in a cohort, with k known

driver point mutations. The  k  known driver point mutations are first nominated as drivers and withdrawn

from the rank-based process. Then, the number of point mutations available to the rank-based approach is N-

k, and the excess after identifying known tumorigenic point mutations is n-k. These N-k point mutations are

then  ranked,  based  on  a  combination  of  i)  their  functional  impact  scores,  ii)  whether  they  belong  to

mutational clusters, iii) their unlikeliness in the given tumor and iv) element specific features (e.g. the impact

on  TFBS  for  promoter  and  enhancers,  the  impact  on  secondary  RNA structure  for  microRNAs,  etc).

OnCohortDrive then nominates  as  driver-by-rank the  n-k top ranking mutations.  Finally,  the  number  of

mutations in excess in the pan-cancer cohort after the excess in all  cohorts has been processed (residual

excess) are processed as explained above across all  tumors in the pan-cancer cohort,  excluding those in

cohorts already processed.

Point mutations observed in prior knowledge GEs or in GEs with no mutational excess are not eligible for

the rank-based approach and subsequently undergo a rule-based approach. The rules used to nominate driver-

by-rule point mutations are based on the same features used for ranking. Point mutations that are not known

drivers, drivers-by-rank, or drivers-by-rule are deemed passengers.

To make an unbiased assessment of the contribution of non-coding somatic point mutations to tumorigenesis,

we applied onCohortDrive solely to somatic point mutations observed in discovery GEs across the PCAWG

18

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/190330doi: bioRxiv preprint first posted online Sep. 20, 2017; 

http://dx.doi.org/10.1101/190330
http://creativecommons.org/licenses/by-nc-nd/4.0/


cohort, skipping the identification of known driver point mutations in GEs.

To  evaluate  the  performance  of  onCohortDrive  we  carried  out  three  benchmarks  (described  in  full  in

Supplementary Note 1; Extended Data Fig. 1g). First, we assessed the accuracy of the approach (rank-and-

cut and rule-based) to correctly classify as drivers and passengers 1,032  known cancer mutations and 12

known benign mutations in tumors in the PCAWG cohort from a total of 22,854 SNVs in coding genes of the

Compendium. We found that while only 16% of the 22,854 SNVs are classified as drivers, 95% of known

drivers  (982  out  of  1,032)  are  correctly  classified.  All  12  benign  mutations  are  correctly  classified  as

passengers. Second, to verify the stringency of the rules designed within onCohortDrive, we benchmarked

the capacity of  the rule-based approach to correctly classify the same set  of  driver and passenger point

mutations. As expected, a lower proportion of SNVs are classified as drivers by rules, 2,412 (11%), still

maintaining a high proportion of the known driver mutations correctly classified, 805 (78%), and all  12

benign variants classified correctly as passengers. Third, we evaluated the performance of  the approach to

correctly  label  as  passengers  all  benign  SNVs  (ClinVar43;  n=314)  and  a  list  of  common  coding

polymorphisms obtained from (ExAC44; n=1,413) in genes of the Compendium. OncohortDrive correctly

classifies 97% and 99% of those SNVs, respectively as passengers. Furthermore, we compared the number

of coding driver point mutations identified by onCohortDrive across cohorts with the global average number

of point mutations in excess estimated by the dNdScv8 algorithm in genes of the Compendium to carry out a

sanity check of the catalog produced by the method. This revealed a satisfactory degree of agreement across

cohorts (Supplementary Note 1; Extended Data Fig. 2a).

Bias towards high CCF of point mutations in driver GEs

We computed the mean cancer cell fraction (CCF) of all point mutations affecting GEs identified across

cancer types in PCAWG. We obtained the values of CCF of each somatic driver point mutation from the

PCAWG Evolution and Heterogeneity  Working Group22.  To determine whether  the  mean CCF of  a  GE

exhibited  a  significant  bias  towards  high  or  low clonality,  we  randomly  sampled  the  same  number  of

mutations observed in each element from all the mutations in the same cancer type. By iterating this process

10,000 times, we computed an expected distribution of mean CCFs of each element and assessed whether a

significant deviation from the observed mean existed.

Identification of driver SCNAs

The Compendium of  SCNA GEs was populated from the analysis  of  chromosomal  regions  that  exhibit

signals of positive selection in their patterns of focal amplifications or deletions across cohorts of tumors

analyzed by TCGA. Significant SCNA peaks were detected by applying the GISTIC algorithm45 to both

TCGA individual cohorts and to the pan-cancer cohort. Peaks detected in this manner were then merged into

metapeaks  and  known  driver  genes  within  each  metapeak  were  identified,  when  known.  The  list  of
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metapeaks  was  further  filtered  by  checking  whether  the  expression  of  the  driver  contained  within  the

metapeak exhibited a significant shift in coherence with the type of peak (amplification or deletion) in the

same cohort in which it had been annotated as a driver.  The metapeaks passing this filter integrated the

Compendium of driver SCNAs. Finally, the copy number of the genomic segments overlapping with the loci

of the metapeaks in the Compendium in PCAWG tumors was used to decide whether they were amplified,

diploid or deleted. (See Supplementary Note 2 for details.)

Identification of driver SGRs

The  driver  SGRs  we  considered  included  genic  fusions  involving  an  oncogene,  truncation  of  tumor

suppressors, and cis-activating rearrangements (e.g., promoter-rearrangement and enhancer hijacking). These

events were obtained from literature reports, curated databases (Cancer Gene Census)2, and a set of high-

confidence novel genomic rearrangements that were identified in the PCAWG cohorts (provided by PCAWG

Structural Variants analysis working group). Using this information, each tumor within PCAWG was probed

for the presence of driver rearrangements. In the case of gene fusions, the gene coordinates plus a 50-kb

flanking window on either side of each member of the pair of fused genes were scanned for the presence of

rearrangements.  Furthermore,  the  rearrangements  were  annotated  when  they  produced  a  sense  in-frame

fusion. 

This resulted in 331 fusion events in 319 samples. For 214 of these events (in 204 samples) we could not find

the expression evidence (i.e., expression of fusion transcripts) due to the lack of expression data (RNA-seq)

available for those samples. However, for the 117 events (in 115 samples) with expression data available, we

identified 41 events (in 40 samples) that have fusion transcript match, based on the results provided by

PCAWG3 (syn10003873)40. For the remaining 76 fusion events (in 76 samples), the lack of fusion transcript

match may be explained by promoter/enhancer hijacking events that resulted in an over-expression of the

target oncogene. The majority of the fusion events that fall under this category are related to the fusion with

IGH/IGL locus. On the other hand, we have included fusion events in seven samples based on the evidence

from fusion transcripts (PCAWG3 results), but were not detected based on the aforementioned SV analysis.

In addition, we have included four fusion events in nine samples of CNS-PiloAstro samples, based on a

previous study46. 

In  the  case  of  tumor  suppressor  genes,  the  breakpoints  affecting  exons  were  considered  as  drivers.  In

addition,  we  analyzed  rearrangements  affecting  the  cis-regulatory  elements  of  the  coding  genes  in  the

compendium. This  included rearrangements  in the  promoter regions (promoter-SV) and those causing a

juxtaposition of enhancers close to a gene (enhancer-hijacking). In the latter case, we focused on genes that

CESAM analysis13 has shown to become over-expressed through the enhancer-hijacking process, which takes

into account the breakpoints, SCNAs, target gene (mRNA) expression, and chromatin interaction data from
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topologically  associating domains  (TADs).  For  those genes,  we performed CESAM analysis  to  identify

PCAWG samples with genes that showed over-expression.

Identification of likely tumorigenic germline variants

We identified all truncating (stop gain, frameshit, splice site) germline points mutations and rare germline SV

deletions affecting genes within a cancer susceptibility list47. We also identified all truncating germline point 

mutations and SV deletions affecting genes involved in DNA repair48, given that a second inactivating event, 

either somatic (truncating or missense) or germline (truncating) was observed in the other allele. 

Identification of biallelic driver events

To identify tumor suppressor two-hit events23, we defined biallelic inactivation as a gene locus GA/B, where

alleles A and B are genetically altered, leading to a genetic Gmut/mut state. The biallelic inactivation assessment

includes three genetic inactivation event types consisting of somatic or germline deletions (“Loss”), somatic

or germline SVs (“Break”) and somatic or germline SNVs (“Mutation”). Given a heterozygous GA/B locus,

we required a loss of the A allele of the gene, leading to a hemizygous G-/B state, and genetic inactivation of

the remaining B allele, specifically requiring the second event to overlap the loss on the A allele, leading to

biallelic inactivation.We considered four classes of biallelic inactivations: i) Loss/Mutation, nonsynonymous

driver mutations of the B allele; ii) Loss/Loss, two deletion events that overlap an exon and the copy-number

derived allele count is 0 both for A and B allele; iii) Loss/Break, SVs where one or both breakpoints are

situated in an exon of the B allele;  and iv)  Mutation/Mutation,  a nonsynonymous germline SNV and a

nonsynonymous driver somatic SNV of the same gene. We infer the germline mutation to occur on the A

allele and the somatic mutation on the B allele, with the assumption that two independent driver mutation

events are highly unlikely to occur on the same allele. All biallelic inactivation events involving at least one

Loss event which had not been detected in the process of identification of driver SCNAs –either because the

SCNA GE was under the statistical power of detection in the corresponding cohort, failed the expression

filter, or because the Loss event involved an arm-level deletion (see Supplementary Note 2)– were included

in the panorama as driver SCNA loss events.

The panorama of driver mutations

All  driver  mutations  identified  across  all  tumors  in  the  cohort  (point  mutations,  SCNAs,  and  genomic

rearrangements, as well as biallelic events, described in previous sections) were integrated at the tumor level

to obtain the whole-genome panorama of driver events. This panorama is presented at the level of single

patients in Figure 3a and summarized as tumor-type bar plot in Figure 3b. Throughout the paper we have

used the panorama to answer open questions in cancer genomics, identify GEs affected by different types of

driver events, and pairs or groups of driver mutations that either co-occur or are mutually exclusive across

tumors.  The  panorama  of  driver  mutations  in  the  PCAWG  tumors  can  be  explored  via  prepared
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Gitools49 interactive  heatmaps  (http//www.gitools.org/pcawg)  and  browsed  in  IntOGen20,  at

http://www.intogen.org/pcawg (Supplementary Note 3).

Gene expression changes caused by different types of driver alteration

To test the hypothesis that events affecting the same coding gene cause the same alteration to the expression

of the gene –as in the case of promoter driver mutations, SCNAs, and SVs– we compared the expression of

several genes (Zscore normalized across cohorts) in various sets of tumors with different genotypes via a

Wilcoxon-Mann-Whitney test.

Therapeutic landscape of PCAWG tumors

To match drugs employed in the clinic, both approved and under trials, as well as small molecules in pre-

clinical  research to  the  driver  alterations  in  tumors  of  the  cohort,  we employed the Cancer  Biomarkers

Database and the Cancer Actionability Database29. We also considered the possibilities of repurposing drugs

in any of these three groups to counteract a different alteration or to use in another tumor type. To compute

the contribution of different types of mutations to the therapeutic landscape, we only accounted for  matches

that i) involve a drug approved for its use in the clinic or in clinical trials; ii) elicit sensitivity to the drug; iii)

occur in the tumor type of the clinical guidelines specified for the biomarker.

Combinations of drivers

For each pair of patients in the cohort, we computed the Jaccard index of the overlap of the driver GEs found

affected in each as the ratio between the number of driver GEs in the intersection between the two samples

and the number of unique driver GEs in both. Then for each pair of GEs in the Compendium, we did  the

same calculation with the overlap of the patients in which each was found to bear driver mutations. We

assessed the statistical significance of the co-occurrence of somatic driver point mutations using a previously

developed mutex algorithm21. The algorithm computes an empirical p-value through the comparison of the

observed  co-occurrence  of  mutations  of  the  pair  of  genes  with  10,000  randomly  generated  arrays  of

mutations takes into account the mutational frequency of each GE and the mutational burden of each tumor.
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Extended Figure 5
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Extended Figure 6
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Extended Figure 10
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Total number of driver alterations from a pair of patients (|A∪B|)
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